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Abstract

In mobile machines, as well as in manufacturing, the overall productivity

is essential for business competitiveness. As the operation of a modern mobile

machine is affected by various parameters, they need to be tuned to reach an

optimal performance – however, due to machine complexity, parameter opti-

misation is difficult for a typical operator. To enable parameter optimisation

locally in machines, this article presents a system architecture to generate infor-

mation and knowledge from machine fleet data and to utilise them in machine

operations in the field. Measurement data is collected and analysed to discover

the associations between machine performance and parameter values. While

some results are plain statistical distributions, any resulting more sophisticated

domain knowledge is stored as rules. Rule-based reasoning enables a zone of

interoperation between the information system and domain experts. Once in-

formation and knowledge have been generated, they are made available to ma-

chines that run the actual parameter assessment application. Results made with

forestry data indicate that the system has a considerable potential to improve

machine productivity.
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1. Introduction

Even a minor productivity improvement may result in a substantial advan-

tage as well as reduced fuel consumption and overall environmental impact. In

material handling and processing, mobile machines are essential in the produc-

tion chain. While modern equipment has a high automation degree, there is5

still room for significant improvement in its operation.

Mobile work machines are complex technical systems that consist of a num-

ber of parametrisable components. Typically, components are customisable

rather than having a fixed operating context. For example, while the typi-

cal excavator task is to dig, different soil types may require different parameters10

for the optimal performance. Further, even work types may vary (such as pile

driving instead of digging).

Mastering parameter knowledge to optimise performance is not a trivial task

in a large scale. The number of parameters may reach hundreds in a modern

machine. While a domain expert might have a solid basic understanding of typ-15

ically good parameter values, an average operator certainly has not. Besides,

even domain experts do not know all parameter–performance dependencies so

advanced analysis methods are required to discover new knowledge from mea-

surement data. The ultimate goal is to raise the automation degree of parameter

optimisation: how to take control over a large data set collected from a machine20

fleet, how to manage parameter and performance value knowledge and how to

apply it in individual machines during operation. Presumably, such optimisa-

tion is extensively performed autonomously by machines in the future. In this

paper, a distributed system architecture is introduced for the task.

The research methodology followed by the work is to resolve requirements,25

to create a concept based on them and to evaluate the concept by implementing

a prototype. The methodology can be seen to follow both design science and

constructive research approach as presented by Piirainen & Gonzalez [1]. Section

2 summarises related work. The various aspects and requirements of the system
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are covered in section 3. The design of the system is introduced in section 430

and a prototype is presented in section 5. Finally, section 6 contains results and

discussion followed by conclusions in section 7.

2. Related Work

This section covers previous studies related to industrial service architec-

tures. Also, vehicle data collection and refinement as well as rule based systems35

are considered.

Bringing service-oriented design to the industrial context has been discussed

in various studies. Jardim-Goncalves et al. propose a platform to improve

enterprise collaboration and system interoperability in industry [2]. Colombo

& Karnouskos argue that service design eases both device integration and re-40

configuration after constantly changing business requirements [3]. Cândido et

al. propose an infrastructure where services facilitate device deployment during

production system lifecycle [4]. The E-maintenance concept in manufacturing

includes not only equipment data collection and utilisation but also knowledge

management for decision support. Bangemann et al. write about a mainte-45

nance systems integration platform that enables geographical distribution and

utilises web services [5]. Karim proposes a framework for service-oriented E-

maintenance applications as well as a methodology for the identification of sup-

portive services [6]. A practical industrial service architecture for condition

monitoring has been introduced by Hästbacka et al. [7].50

Vehicle and machinery data utilisation have been studied in several articles.

Lu et al. have researched fuzzy rules generation for fault diagnostics [8]. Dingus

et al. have documented the collection of a large car data set in everyday con-

ditions [9]. Wu et al. have utilised mathematical methods to recognise engine

faults from audio data [10]. Palmroth has researched the analysis of mobile55

machine data to assist operator learning [11]. Golparvar-Fard et al. have devel-

oped an algorithm to recognise earthmoving equipment actions from video [12].
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He et al. demonstrate how a cloud application may assist either in finding a

parking place or in vehicle data mining [13].

Particularly in agriculture, machinery data acquisition is a growing concern.60

Steinberger et al. as well as Peets et al. have studied data collection from

heterogeneous data sources [14, 15]. Iftikhar & Petersen have researched bidi-

rectional data transfer from and to machinery [16]. Fountas et al. have designed

a farm machinery information system to facilitate data utilisation [17].

Rule based systems are useful tools in the energy management of hybrid65

vehicles and machines. For example, Lin et al. have utilised dynamic program-

ming to generate rules for power management [18]. Hybrid excavators have been

included in power management research by, for instance, Kim et al. [19].

Rules have also other applications in mobile machines. Rules can assist in

selecting the best machine or equipment for some specific purpose as studied by,70

for example, Amirkhanian & Baker [20]. Further, den Hartog et al. have utilised

rule based models to predict the performance of mobile machines [21]. Bradley

& Seward have utilised rules to raise the intelligence and the automation degree

of excavation [22].

Compared to previous research, the work to be presented is unique as it75

combines the aspects of a service architecture, a distributed machine fleet, ma-

chine data refinement and refined data utilisation locally in machines as well as

knowledge management with rules. Two previous works have considered sys-

tem architecture, machine data processing and rules for knowledge management.

Kannisto et al. have developed an architecture for operator feedback generation80

[23]. Kannisto et al. introduce a system for mobile machine parameter optimi-

sation [24]. Compared to this work, it is on a more conceptual level, and no

experimental results are presented.

3. Machine Information Management Requirements

Parameter optimisation is likely present wherever mobile machines are utilised.85

While this section considers the problem from a general viewpoint, forestry do-
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main is also considered particularly. This work is considered novel as equally

comprehensive publications about service architectures for managing machine

parameter optimisation are not known to exist.

3.1. Domain Related Challenges as Motivator90

An information system to aid parameter optimisation would be beneficial in

forestry machines. They have several instruments for handling tree stems; for

instance, the boom of a machine has typically several actuators that operate

boom joints or grab or process stems. While operator skills are important, the

overall machine performance is largely affected by the precision and speed the95

machine responds to operator actions which is effectively determined by ma-

chine parameters. (The influence of machine parameters has been suggested by

Väyrynen et al. [25].) Unfortunately, parameter optimisation requires knowl-

edge that is unavailable for typical machine operators, and even domain experts

do not have all the knowledge potentially available in measured machine data.100

The global or even regional variety of forests – and its effect on which parameter

values perform best – brings additional challenge so operating contexts should

also be considered. In the end, not only data analyses are required but their

results should also be available for operators to assist parameter optimisation.

Further, domain information and knowledge are expected to evolve constantly105

as new data is collected and new analyses are executed – that is, repeated up-

dates are required. The parameter optimisation process can be illustrated with

a loop as in Figure 1.

The solution should enable the generation, distribution and exploitation of

domain information and knowledge discovered in data analyses – even local110

utilisation in machines is desirable. Depending on the industry, considerable

requirements and limitations may arise from machine distribution. In forestry,

machines may operate far from each other, the corporate office and public in-

frastructure. Also, the machines may have no Internet connectivity for days

or even weeks. In a business ecosystem, parameter optimisation may be man-115

aged by various actors (at least operators, the machine manufacturer or a local
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Figure 1: Parameter optimisation loop for improving the overall machine performance.

dealer). Their scope and access to physical machines varies, but distribution is

inevitable.

3.2. Required System Features

The research questions are as follows:120

What kind of conceptual information system architecture is required

to centrally manage the information and the knowledge related to

machine parameter optimisation? How to enable the distribution of

information and knowledge to geographically dispersed machines so

they can be utilised locally during operation? How to implement125

such an information system?

To concretise parameter optimisation, let us look at an example about de-

termining the amount of hydraulic flow directed to a machine boom. The flow

basically determines the power available for boom operations: more flow results

in faster responses. However, at some point, the motion would become even130

too quick causing inaccuracy and controlling difficulties. That is, the goal is to

balance power and accuracy (see Figure 2).

The simplest form of parameter optimisation is performed using two types

of information: relative performance and relative parameter values. First, the
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Figure 2: Unsuitable parameter values may result in too slow or too inaccurate responses to

operator actions.

absolute performance of the machine is determined from measurements. Then,135

by comparing to past performance values, relative performance is determined.

If performance is low, relative parameter values are generated by comparing

absolute parameters to ones that have provided a good performance in the past.

A simple feedback is to suggest to use historical well-performer parameters.

As the parameter optimisation performed locally in machines utilises fleet-140

wide information, a significant interaction requirement appears. To have fleet

scope results, large data analyses must be performed in the corporate office.

Then, to enable the utilisation of the results in each machine, they must be

delivered and cached locally as no persistent Internet connectivity can be as-

sumed.145

The diversity in operating environments causes systematic variation in per-

formance and parameters so some context classification method is required.

Each domain has its own context characteristics: forests and trees in forestry,

soil types in excavation, fields and plants in agriculture and so forth. Differences

in performance values are expected, and even parameter value adaptation may150

be required. Whatever are the method and resolution in context classification,

consistency in data analyses is guaranteed by using identical methods in the

corporate office and in each machine. Moreover, if the context classification

method evolves, an update mechanism is required.

Additional complexity is caused by domain knowledge utilisation. There155

are likely cases where domain experts know some “rules of thumb” that may
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Figure 3: Processing detailed data enables refinement to generate of information and knowl-

edge; more value is gained by raising the abstraction level.

consist of arbitrary condition structures on performance and parameter values.

The support for such knowledge representation likely adds to adaptability and

the number of use cases in parameter optimisation. As domain experts are rarely

ICT experts, an easy-to-use interface should exist for knowledge management.160

Another requirement is that whichever implementation technology is chosen,

it must be possible to replace the domain knowledge modelling environment

without otherwise re-engineering the system (ease of deployment is desirable

in system evolution). Finally, even domain knowledge must be delivered to

machines for local utilisation.165

To create a structure for information processing, the various information

types have been positioned in the data–information–knowledge triangle (referred

to, for instance, by Ackoff [26] as cited by Rowley [27]). Figure 3 illustrates this:

data consists of raw values while information is refined from it, and knowledge

covers more complex domain expertise. While the information level is most170

essential in feedback generation, the knowledge level brings additional adapt-

ability.
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Figure 4: Machine data is collected for analysis. With the resulting information and knowl-

edge, parameter value feedback generation is enabled in machines.

The requirements are summarised in Figure 4. The figure emphasises dis-

tribution requirements: fleet data is collected for centralised management and

analysis, and its results are delivered back to machines for local utilisation. The175

concept has an asynchronous nature: although there are links to transfer infor-

mation between instances, machines operate independently of each other and

the office.

4. Parameter Optimisation Architecture

In conformance with the requirements, this section specifies a conceptual180

system architecture. As the ultimate requirement is feedback generation locally

in machines, its functionality is explained first. Then, the required supportive

architectural features are discussed.

4.1. Local Feedback Generation in Machines

The feedback generation flow executed in machines is illustrated in Figure 5:185

it includes context recognition, the generation of relative performance and pa-
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Figure 5: The flow of generating parameter feedback within a single machine for the operator.

rameter values and, finally, the application of domain knowledge. First, machine

data is retrieved after which the prevailing context class is resolved. Then, rela-

tive performance values are generated using fleet-wide aggregated information.

If machine performance is insufficient, a simple parameter value comparison is190

executed. Finally, domain knowledge is utilised for further parameter optimi-

sation – this is always performed as parameter tuning might be desirable even

if overall performance seemed fine. In the hydraulic boom power optimisation

example, boom performance could be fine even if fuel consumption were weak.

Context information is utilised in the generation of relative parameter and195

performance values. Context classes have been defined in data analysis – for each

context class, there is a dedicated set of aggregated performance and parameter

values. What is observed in context classification depends on the domain where

the machine operates (forestry, earthmoving, agriculture and so forth) and the

type of work being performed – anything that affects performance values should200

be considered. Figure 6 illustrates relative value generation – on a high level,

this applies to both parameters and performance.
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Figure 6: How operating context is considered in the generation of relative values.
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Recommended
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Figure 7: An illustration of a parameter range.

Relative parameter values are generated by comparing numeric values to

ranges associated to good performance in the identified context in the past.

In Figure 7, the parameter value represents the control current of a hydraulic205

actuator. In the related operating context, the recommended range is from 500

mA to 800 mA. Statistically, the best performance has been reached with 690

mA. In the hydraulic boom example, such a parameter could determine the

positioning current of the valve that determines the flow (or power) directed to

the boom.210

Relative performance values are generated from distributions. For each per-

formance measure, there will be a distribution in each context class. Relative

values are represented as percentiles: for example, a value higher than 75% of
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past values has percentile 0.75. The value does not indicate if high is good or

not – for example, high productivity is desirable while high fuel consumption is215

not.

4.2. Domain Knowledge Representation

Domain knowledge is represented as rules. Whichever the chosen imple-

mentation framework or technology is, the previously given requirement of easy

knowledge modelling sets some restrictions to be considered.220

To demonstrate a rule, let us again look at the hydraulic boom example.

The following pseudocode represents a rule about lowering the parameter de-

termining the amount of flow (or power) the hydraulic boom receives. The rule

is necessary if the logic is not reached with the regular relative parameter value

comparison.225

IF

Measure ” Product iv i ty ” i s ”weaker than average ” AND

Measure ” Cor r e c t i v e manoeuvres” i s ”weaker than average ” AND

Parameter ” Fluid to boom” i s ”above optimum”

THEN230

Lower parameter ” Fluid to boom”

In knowledge modelling, fuzzy values are utilised instead of numbers to en-

able more power of expression. The high resolution enabled by percentiles may

bring only a little value as uncertainty is always present in measurements. So, to

put weight on expression, elaborated fuzzy values are utilised. Here, a percentile235

value falls to one of four slots: it can be weak, weaker than average, better than

average or good (complements of these being considered as well); see Figure 8.

It must be noted that whether high or low is good is also considered here – thus,

it must be defined for each measure (a high productivity is good while a high

fuel consumption is not). For instance, a configuration file or a rule set may be240

utilised for the definition.
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Figure 8: The generation of fuzzy values from measurement data.

4.3. Conceptual Architecture and Design Principles

Considering previously introduced aspects, a conceptual architecture of data

flows and refinement can be created (see Figure 9). The application logic in the

machine may be run during machine operation while office operations will be245

performed periodically without direct connection to machines. The degree of

automation is lower in the office as both human effort and critical human in-

spection are required in data analysis. Data is collected from a large machine

fleet to a central storage – a cache is utilised in each machine as no persistent

Internet connectivity can be assumed. Data analyses reveal what kind of per-250

formance results from various parameter value combinations in each context

class (as in the work of Väyrynen et al. [25]). The resulting information about

those associations is exploited locally in each machine; it is utilised to determine

the prevailing relative performance and parameter values. Naturally, a context

classification similar to the one in the office must be utilised. Due to Internet255

connectivity limitations, caching is applied to the office supplied information in

machines. For domain knowledge, a repository is held in the office, and a cache

exists in machines.
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Figure 9: Data is collected from machine fleet after which analyses can be performed in the

office. The resulting information and knowledge are delivered to machines. Finally, using the

information, the knowledge and local machine data, parameter value feedback is generated

locally in machines. As more data is collected during the system lifecycle, new analyses are

performed periodically in the office.
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Open platform-independent technologies as well as loose coupling are favoured

in component interface implementation. First, the goal is to minimise any de-260

pendencies to a specific platform. As the system consists of multiple compo-

nents, a need to replace some of them may occur during its lifecycle. It is

beneficial that no platforms are excluded by design as machine control and in-

formation system platforms vary and evolve. Second, loose coupling will make

component replacement easier. Replacing one component should not require265

any changes in other components as long as their interfaces remain the same.

This was required explicitly for knowledge modelling as rule frameworks often

use proprietary technologies.

5. Parameter Feedback Prototype

Considering the requirements and designed architecture, a prototype has270

been implemented (see Figure 10). There is a strict division into office environ-

ment and machine environment components. The office has a component for

rule modelling, and analysts perform data analyses to have aggregated fleet in-

formation. As data collection is rather a straightforward function to implement

(though requiring additional effort), it has been left as a future task. Param-275

eter ranges and performance distributions are currently stored in plain files.

In machines, there are components for feedback generation, machine data re-

trieval and rule execution. Each software component is explained in detail in

the following paragraphs.

The prototype has been designed to run in a forestry machine that provides280

a service interface for data retrieval. The interface utilises XML (Extensible

Markup Language) and HTTP (Hypertext Transfer Protocol) so integration is

easy per a wide support in software libraries.

The actual feedback generation is performed by the feedback engine compo-

nent. It utilises local machine data, cached parameter ranges and performance285

distributions, and the rule executor component to generate parameter feedback.
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For domain knowledge, there is local file caching. In ruleset retrieval, the

ruleset cache is the active component while the office simply provides it for

download. The ruleset cache has a service interface so it is loosely coupled to

its consumers.290

Domain knowledge is represented as rules and modelled with the Drools

framework. While it provides several ways for rule modelling, decision tables

are utilised as they require only basic ICT knowledge from the rule modeller.

The rule executor service performs domain knowledge based inference in ma-

chines. The service has a loosely coupled platform independent interface so295

even a complete substitution is possible – in that case, no service consumer

re-engineering is required. Below, there is an example of representing a produc-

tivity value in the format of the interface: object types and their properties are

not predefined. The format can be mapped for utilisation in any object based

interaction.300

• Object type = ”Measure”

– Property name = ”name” value = ”Productivity”

– Property name = ”value” value = ”Weaker than average”

In the current prototype version, parameter range and performance distribu-

tion delivery from office to machines has not been implemented, but dedicated305

XML based formats have been specified. The XML documents are currently

delivered manually. With modern technologies, document retrieval from a web

server is a straightforward task, but the required setup was considered to bring

only little additional value in the prototype. An implementation similar to

domain knowledge caching would presumably suit here as well.310

Contexts are recognised by utilising a configurable tree stem classification

condition set in the prototype. Stems are classified after their properties, and

the predominant class is considered the context – the objective is to restrict

processing to stems that are comparable to each other. While the context recog-

nition logic is simple, the prototype enables its configuration as the conditions315
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are parsed from a text file. Practically, any operating environment properties

available from the machine information system may be utilised. To keep data

utilisation consistent, the conditions should be generated along with the data

analysis that generates performance distributions and parameter ranges. While

delivered manually, the context definition document could as well be retrieved320

from a corporate web server.

5.1. Test Setup 1: Operator Training Simulator

The first practical experiments were run in a forestry machine simulator

utilised for operator training. The scenario was to optimise the parameters

that affect automatic tree stem positioning in a wood processing implement.325

The function is completely automatic so parameters have a high influence on

performance. The simulator had a machine data provider interface identical to

a real machine.

The setup had a few limitations related to context recognition and the util-

isation of data and domain knowledge. First, for simplification, context recog-330

nition was not considered. Second, performance distributions and parameter

ranges from physical machines could not be utilised as the simulator physics

model was not completely realistic. The initial task was to resolve appropriate

performance and parameter values for automatic stem positioning and to cre-

ate the corresponding distributions and ranges. Third, any rules applied did335

not contain any complex domain knowledge but they were redundant to other

parameter estimation functions.

5.2. Test Setup 2: Real Machine Data

The prototype was also tested with real data captured from forestry machines

during operation. Earlier, data analyses had been run on past data to gener-340

ate appropriate performance distributions, recommended parameter ranges and

context recognition conditions. The prototype was run in a plain PC as there

was no possibility to run in forestry machines – that way, it was also easy to
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Figure 11: Engine running speed during boom operation rule as a decision table row.

utilise data from multiple machines. However, data was retrieved from an in-

terface identical to a physical machine.345

The experiment covered both simple parameter range checks as well as do-

main knowledge utilisation. The first point was to generate feedback about

the parameters affecting automatic tree stem positioning in a wood processing

implement. The focus was to test the assessment if parameters are inside the

recommended ranges – that is, utilising previously refined performance and pa-350

rameter information. The second point was to test how knowledge (i.e. rules)

utilisation works. Even if some performance measures were good, a machine may

still work non-optimally. Here, we looked at the diesel engine RPM (running

speed) setting during boom operation as a high value may waste fuel. How-

ever, a skilled operator may exploit the additional power of high RPM (thus355

providing more effective operation) so a rule was created to observe both fuel

consumption and the RPM setting (see Figure 11).

6. Results and Discussion

A system architecture has been designed to master data, information and

knowledge from a mobile machine fleet so machine parameters can be opti-360

mised locally in machines. The system must be aware of various operating

contexts, covering environment and type of work. These requirements are met.

The system enables data collection and exploitation so information and knowl-

edge may be generated and made available for machines for download. Also,
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provided that context classes have been considered in data analysis, the ap-365

propriate aggregated parameter and performance information set is considered

while generating parameter feedback.

In conformance with the requirements of the system, a prototype has been

implemented. While the implementation of some system parts remains a future

task (raw machine data collection as well as the distribution of parameter ranges,370

performance distributions and the context classification definition), the business

logic was already experimented successfully in two environments. Easy knowl-

edge modelling is enabled by decision tables that operate on fuzzy values. The

prototype utilises a machine data retrieval interface identical to that on phys-

ical machines so it could be used even during real machine operation. Open375

platform independent interface technologies and formats have been utilised to

promote easy component deployment during system evolution.

First, a short test in a realistic operator training simulator demonstrated

how non-optimal parameter values resulted in a low performance and appropri-

ate feedback. The application utilised performance distributions to determine380

relative performance and recommended parameter ranges to indicate how pa-

rameter values should be changed. Parameters were also estimated with rules.

As simulator parameters had been set to non-optimal values, causing weak ma-

chine performance, the feedback application suggested parameter tuning (see

Table 1) as expected. A clear shortcoming is that the utilised parameter ranges385

and performance distributions were not from real operative data but from the

simulator; still, their utilisation was similar as if retrieved from a fleet-wide data

container server. Further, there was no actual case for domain knowledge util-

isation; instead, the rules were redundant to other functionality. In addition,

context recognition was not utilised at all. Finally, although data coverage was390

relatively low here, appropriate output was generated during operation, and a

system interface identical to a physical machine was utilised.

Second, a more comprehensive test with real machine operation data was

performed. A total of 11 machines was included. The data of each machine

covered the processing of at least 1000 tree stems. The results are shown in395
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Table 1: The prototype was tested in a realistic forestry machine simulator to observe

automatic stem positioning parameters and the resulting performance. In each test run,

automatic positioning was performed at least 20 times. The parameters had no effect on

positioning error. However, positioning time deteriorated when parameter values were non-

optimal. As performance was weak (underlined), the system suggested to set the parameters

(bold) to their statistically optimal values (by both plain parameter value comparison and

rule-based assessment).

Measure Measure Parameter Parameter Parameter

Run Description Positioning

error

Positioning

time

Max speed Approach

speed

Approach

distance

1 Optimal approach Good - Optimal Optimal Optimal

2 Quick and short

approach

Good - >Optimal >Optimal <Optimal

3 Optimal approach - Good Optimal Optimal Optimal

4 Quick and short

approach

- Weak >Optimal >Optimal <Optimal

5 Short approach - Weak >Optimal Optimal <Optimal

Table 2. Machines 4 and 5 had a good performance so no parameter feedback

was given. Machine 3 had a bad performance but it could not be explained with

parameters. All the other machines had at least one bad positioning parameter

value. A high RPM during boom usage setting does not seem to explain high

fuel consumption in boom utilisation as the RPM lowering rule only fired for400

machine 2 although 6, 8, 9 and 10 also have a high boom fuel consumption.

The second test run complements the coverage of the first. Operating data

sets from multiple physical machines were utilised, and performance distribu-

tions as well as parameter ranges had also been generated from real operational

data. Each data set is relatively large, and the RPM rule demonstrated knowl-405

edge modelling. However, the analyses were only run afterwards and not during

machine operation. Still, from the architectural point of view, the setup was

close to realistic as machine data was retrieved from an interface identical to

real machines.
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Table 2: Parameter optimisation results with real machine operation data.

Mach. ID Positioning perfor-

mance

Positioning parame-

ters out of range

Boom fuel consump-

tion

Lower

boom

RPM

suggested

1 Weak Approach speed Better than avg No

2 Weaker than avg Approach speed Weaker than avg Yes

3 Weak (None) Better than avg No

4 Good (Not estimated) Better than avg No

5 Good (Not estimated) Better than avg No

6 Weaker than avg Approach speed, ap-

proach distance

Weaker than avg No

7 Weak Approach speed Good No

8 Weaker than avg Approach speed Weaker than avg No

9 Weaker than avg Approach speed,

max speed

Weak No

10 Weak Approach speed,

max speed

Weaker than avg No

11 Weaker than avg Approach speed,

max speed

Good No
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The context recognition method utilised in the second test run appeared410

ineffective. It classified stems only after their diameters, and the class with most

stems was declared the context. Surprisingly, the same class was determined for

each test run. That is, method should be considered carefully as it seemed to

provide little practical value.

All in all, the prototype has concretised the functionality of the concept415

in practical experiments. The first experiment in a simulator demonstrated

parameter feedback generation right after operation while the second experiment

demonstrated real fleet-wide machine data utilisation. In both the experiments,

the prototype discovered non-optimal parameter values and gave feedback to

change them to improve machine performance.420

The system has also room for more advanced design. Especially in forestry,

the possibilities of context recognition are wide as there is a huge variation in

forests even regionally. With contexts, if comprehensive data sets are collected,

a good accuracy may be reached in parameter optimisation – still, the most

significant advantage would come as soon as the clearest errors were eliminated.425

Further, in knowledge representation, the utilisation of rules gives a huge po-

tential. A graph based rule modelling tool would make rule modelling even

easier and give more freedom of expression. From the practical point of view,

effort should be put on the actual delivery of data, information and knowledge

between data analysts and machines. Implementing caching, servers and all the430

channels required for the traffic is not trivial.

As the potential of the concept has been shown, the various actors in industry

should exploit it. Considerable benefits are expected: a better efficiency helps in

raising productivity, gaining competitive advantage as well as lowering resources

consumption and environmental impact. Software, information and knowledge435

can be utilised to get more from physical equipment capabilities. Although

only experimented in forestry, the architecture and methods are applicable to

improve machine performance and efficiency in any domain – such as agriculture

or construction. Combined with constantly advancing big data processing, there

is potential to develop even completely new optimisation methods following the440

23



results of this work. It is expected that computer-assisted or even automatic

optimisation becomes a common feature in future machines.

7. Conclusion

In this article, a system architecture for mastering the information and the

knowledge required for mobile machine parameter optimisation is presented.445

Data is gathered from a large machine fleet for analysis so new cause-and-effect

information and knowledge about parameters and performance are generated.

Both information and knowledge are made available to machines so they can

be exploited during operation. As the information and knowledge are under

constant evolution, it must be possible to retrieve an up-to-date version to450

machines when connectivity is available.

In the office environment, there are storages for performance and parameter

information as well as domain knowledge. Performance information is stored

as distributions while parameter information is represented as ranges of rec-

ommended values. Domain knowledge is stored as rules – decision tables are455

utilised as they require only basic ICT expertise from the rule modeller en-

abling domain experts to edit them. Operating contexts are also considered.

As a machine may operate in various environments and perform various types

of work, variation in optimal parameter values as well as performance measures

is expected. This requirement is considered by associating performance and460

parameter information to context classes.

Caching must be utilised in machines so they can submit their data to the

central storage whenever Internet connectivity is available. Similarly, each ma-

chine must have a cache for the most recent information and knowledge sets

retrieved from the corporate office.465

In each machine, there is an application to provide parameter feedback to the

operator. Utilising local parameter and performance values and the information

and the knowledge retrieved from the office, the application assesses prevailing

performance and parameter values and suggest parameter adjustment if needed.
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In conformance with the design, a prototype has been implemented. Data470

analysis results and rules are delivered from the office environment to machines.

At runtime, parameter and measurement values are retrieved from machine

information system to generate feedback. As machine parameters and per-

formance were considered in tests, the prototype proved to be successful by

providing appropriate parameter tuning suggestions.475

Various future research tasks remain. Currently, the system does not con-

sider the individual characteristics of machines and their components. The

system should save state information to detect if parameter value adjustment

has actually decreased performance. Further, parameter adjustment should be

automatised so the operator would not have to perform it manually.480
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