
K
nowledge management 
methods are the core of today’s 
data-driven production sys-
tems. The related optimization 
models can receive power and 

resilience from external supportive ser-
vices, such as Federated Learning (FL) 
and Continual Learning (CL).

Federated Learning and Continual Learning
How can you contribute to collective 
knowledge, receive feedback, and 
still preserve your privacy? This is the 
challenge that Federated Learning (FL) 
addresses [1].

In FL, each participant or organi-
zation retains its local AI model and 
shares only the model updates with a 
central service. This service aggregates 
updates from all participants to create 
a global model, which is then shared 
across the network in terms of weights. 
As a result, the network benefits from 
shared insights without exposing orig-
inal data, which is often restricted by 
privacy regulations.

Complementing FL, Continual 
Learning (CL) provides ongoing 
support for maintaining these models 
throughout their lifecycle [2]. CL mon-
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itors for model drift, identifying when 
performance declines and retraining 
becomes necessary. This capability 
enhances resilience, a key objective 
of Industry 5.0 [3], which emphasizes 
human-centric and sustainable inno-
vation.

Figure 1 demonstrates how FL and 
CL services facilitate training and 
maintaining local models in production 
environments. While FL safeguards the 
privacy of each production plant, CL 
addresses the challenges of model drift, 
ensuring robust, adaptive performance.

Figure 1. FL ensures privacy by training a global model from local data,  
while CL addresses model drift, ensuring adaptability and resilience.
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Benefits in steel production
FL can help controlling industrial 
processes, as shown in ALCHIMIA 
research project, which develops con-
trol methods for electric steelmaking. 
The theme is paramount for modern 
society for two reasons: first, steel is an 
essential for the economy, and second, 
electric steelmaking reuses steel scrap, 
which is an essential step towards 
circularity and green transformation. 
Scrap recycling allows lower CO2 
emissions compared to the integrated 
steelmaking route from iron ores.

Figure 2 illustrates a typical path in 
electric steelmaking from raw materials 
to the final products. As we see, this 
path is long and complex. This text 
explores FL possibilities related to two 

processes: the Electric Arc Furnace 
(EAF) and the subsequent Ladle Fur-
nace (LF).

FL especially fits the very common 
case when several steel plants of a 
company group use the same processes, 
and the data of one of these processes 
is incomplete for some reason. This can 
apply, for example, if the data lacks a 
large variety of operating conditions, 
covering only a few exceptional situa-
tions. Furthermore, different stages in 
digitalization can mean that a process 
or area lacks suitable historical data to 
train models. In such cases, the FL-gen-
erated global model can help creating 
a well-performing local model even 
without local experiences and without 
the need to share data from the original 

company, which might imply complex 
IPR issues and potential exposure to 
cyber-security threats.

Model Parametrization for Electric Arc Furnace
The EAF melts steel scrap with the help 
of electrical energy. 

EAF control can be facilitated based 
on physical models that monitor and 
predict the behavior of the process. A 
physical model calculates an estimate 
for the properties of the produced 
liquid steel, such as temperature and 
chemical composition, based on known 
inputs, such as electrical energy, oxygen 
injection and charged scrap amounts 
[4]. Figure 3 illustrates the structure of 
such a physical model with input and 
output values.

Although a physical model is an 
untypical target for FL, FL is being 
developed for the parametrization of 
the model. In this approach, multiple 
processes share their model parameters 
with the central FL server, which will 
generate a global model parameter set 
to help in local model parametrization.

Furthermore, CL will help detect-
ing drifts in the prediction accuracy of 
the physical models due to changes in 
process conditions. Additionally, it can 
reveal when an increase in data cover-
age can improve model performance. 
In these cases, the CL scheme suggests 
retraining to maintain the model per-
formance.

Figure 2. The route from scrap to steel products. Figure copyright © Celsa Group.

Figure 3. The structure,  
inputs and outputs of  
the dynamic EAF  
process model.
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More Effective Training for Ladle Furnace
LF process uses the crude liquid steel 
tapped from the EAF as its input. The 
operation principle is to receive the 
crude steel and iteratively add ferroal-
loys and electrical energy to reach the 
target conditions of liquid steel for 
continuous casting.

In this work, the LF model is a 
Feed-Forward Neural Network. Like 
many AI models, this neural network 
is trained with data, and a good data 
quality ensures proper model training. 
Therefore, we preprocess the data to 
eliminate unreliable measurements [5] 
and, using this consolidated database, 
thanks to learning algorithms, the 
model can automatically tune its inter-
nal parameters. The model calculates 
the final steel chemical composition 
and temperature from the data it 
receives, in terms of the initial steel 
chemical composition and temperature, 
electrical energy and argon usage and 
the ferro-alloys additions. Figure 4 illus-
trates, as an example, the performance 
of the models related to two outputs 
(Chromium and Carbon content), 
depicting the relation between the 
measured target value and the simu-
lated one.

In the FL scheme, each local LF 
model from the plants will be shared 
with the central server. In return, the 
global model will help in adapting the 
local models to the common, net-

work-wide knowledge for the optimal 
performance.

On the other hand, CL will reveal 
degraded model performance and 
suggest retraining for the local models 
as needed.

Outlook
The ideas and models presented 
in this text result from the Hori-
zon-Europe-funded research pro-
ject ALCHIMIA, which focuses on 
advanced modelling with techniques, 
such as AI, FL, and CL in steel pro-
duction, as well as human factors to 
consider the stakeholders involved. The 
results will include not only optimiza-
tion models but also an optimization 
framework for the decision support of 
operators. The project will deliver its 
final results during 2025.
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Figure 4. Performance of the LF model (for Chromium and Carbon contents).
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